ORACLE ENQUEUE WAITS & CAUSES WITH POSSIBLE ACTIONS TO BE CHECKED OR VERFIED

	Lock Type
	Wait Event
	Lock Mode & Type
	Causes
	Actions
	Remarks

	User Lock
	Enq: Tx Row Lock Contention
	TYPE is TX, REQUEST is 6

	· Two transactions simultaneously access the same data record in change mode.

	Find the sessions that are contending to change the same blocks by using following query
/*
col file# for 99999
col block# for 999999
col obj for a18
col type for a9
col lm for 99
col bsid for 9999
*/
select count(*) cnt,

session_id sid,

substr(event,1,30) event,

mod(p1,16) as lm,

sql_id,

CURRENT_OBJ# || ' ' || object_name obj

, o.object_type type

, CURRENT_FILE# file#

, CURRENT_BLOCK# block#

, blocking_session bsid

from v$active_session_history ash,

all_objects o

where

event like 'enq: T%'

and o.object_id (+)= ash.current_obj#

group by event,session_id,p1,sql_ID,CURRENT_OBJ#,OBJECT_NAME,OBJECT_TYPE,CURRENT_FILE#, CURRENT_BLOCK#, BLOCKING_SESSION

order by count(*)

/

1. Once you identify which object it is or the SID either kill or proceed to ask the application team to commit the original sessions that is holding

2. If the object is an index, that means

	

	User Lock
	Enq: Tx Row Lock Contention
	TYPE is TX, REQUEST is 4

	· Two transactions change data records simultaneously, which are identical in terms of a unique or primary key constraint.

	Diagnosis Same as above the solution would be

To correct this problem, ensure that the same primary key is not inserted or changed repeatedly in parallel in a table. (for example, by checking whether the key already exists). If this is not possible, increase the commit-frequency in order to release the enqueues again earlier.

Mode 4, happens for 3 reasons

1. Unique key contention

2. Foreign Key contention

3. Bitmap index contention

	

	User Lock
	enq: TX - index contention
	TYPE is TX, REQUEST is 4

	· Several DML operations want to access the same index block simultaneously
	If such a 'multiple requested' index block is not in the buffer pool, it must be read by the first transaction from the disk ("db file sequential read"). The other DML operations wait for a TX enqueue during this process.

Index Block splits,
	

	User Lock
	enq: TX - allocate ITL entry
	TYPE is TX, REQUEST is 4

	· Several transactions want to change rows from the same block, but cannot find a free entry in the Interested Transaction list (ITL) in the block header.
	If the enqueues occur in a table in connection with massively parallel inserts or updates, this is usually a problem to do with accessing the Interested Transaction List (ITL) in the lock header. The solution for this requires increasing the INITRANS sufficiently, as described in Note 84348

ITL waits for parallel INSERT operations can be alleviated by increasing the FREELISTs or FREELIST GROUPs, or by switching to ASSM.

	

	User Lock
	enq: TX - row lock contention
	TYPE is TX, REQUEST is 4

	· Several DML operations want to change data records in the same block of a bitmap index.
	Changes in bitmap indexes always lead to the whole area being locked. If several transactions want to change the same area, row lock waits occur in level 4.

 Drop the bitmap indexes before you begin with parallel loading. See also the relevant section in Note 84348 for further information.

	

	User Lock
	Enq: TX – contention
	TYPE is TX, REQUEST is 4

	· this is then possible if parallel INSERTs are running and one of these INSERTs triggered an AUTOEXTEND operation and must wait for "Data file init write"
	this is then possible if parallel INSERTs are running and one of these INSERTs triggered an AUTOEXTEND operation and must wait for "Data file init write"

· Setting Table space read only

· Session 1 – start transaction, don’t commit

· Session 2 – alter tablespace read only

· Free Lists

· Non-ASSM

· Sessions freeing block

· If no txs free lists available (min 16, grow up depending on block size) , pick one and wait TX 4

· 2PC – two phase commit

· First does a prepare the commit

· Any read or write access in the intervening time waits TX 4

	

	User Lock
	enq: TM – contention
	TYPE = TM, REQUEST = 3

	· Object lock during operations such as REBUILD INDEX or VALIDATE STRUCTURE or due to command "LOCK TABLE ... IN EXCLUSIVE MODE [NOWAIT]"

	Determine the session that holds the lock and determine its LMODE.

If LMODE = 4, the locking session currently executes an operation such as an index rebuild or a consistency check using VALIDATE STRUCTURE without an ONLINE flag. Terminate this operation, so other transactions can access the object again.

If LMODE = 3, the session that holds the lock is not the main problem, since several sessions can use a TM lock with mode 3 at the same time and in the same table (for instance, if two transactions change different records in the same table at the same time). Instead, you must analyze whether there is another waiter that requires a TM enqueue with REQUEST = 4 (for example, REBUILD INDEX ONLINE, see below) and which therefore blocks all requests in the queue lined up behind it.

	

	
	enq: TM – contention

	TYPE = TM, REQUEST = 4

	· REBUILD INDEX ONLINE or SHRINK waits due to an active TX enqueue on the corresponding table.
	As described in Note 682926, a REBUILD INDEX ONLINE is only online-enabled to a limited extent. You must therefore make sure that an online rebuild is only started if no long-running transactions are working in the relevant table. See Note 910389 for information about Segment Shrinking
	

	
	enq: US – contention
	
	· US-enqueues occur in relation to the automatic online or offline setting of undo segments by the SMON-process or by other undo segment activities.

	To reduce US enqueues, you can set the following event. Among other things, this event suppresses the automatic offline setting of undo segments that are no longer required.

event="10511 trace name context forever, level 2"

If US enqueues are responsible for performance problems in the Real Application Cluster, import the latest Oracle patch set. If this does not solve the problem, create an SAP customer message to initiate further analysis.

	

	
	enq: CI – contention
	
	· The CI enqueue is allocated when a session executes a cross instance call, in other words, when a background process is triggered in the Oracle instance to carry out a certain task
	When a session has allocated the CI enqueue successfully, it waits for the Wait Event "rdbms ipc reply" until the background process issues a response. Other sessions that also require the CI enqueue must wait for it.this means that the optimization of CI enqueues corresponds to the optimization of "rdbms ipc reply" waits. Therefore, refer to the "rdbms ipc reply" section in Note 619188.

	

	
	enq: RO - fast object reuse
	
	· The reuse object enqueue is used in exactly the same way as the CI enqueue in TRUNCATEs and DROPs.
	refer to the details described above
	

	
	enq: TT - contention
	
	· The TT enqueue is used to avoid deadlocks in parallel tablespace operations (deleting and creating tablespaces, creating data files, tablespace point-in-time recovery, creating undo segments in the tablespace, ALTER TABLESPACE, extent allocation and deallocation in the tablespace, .).

	If an ALTER DATABASE TEMPFILE DROP hangs due to a TT enqueue that is retained by the SMON process in Oracle 9.2.0.6 or lower, Oracle bug 3833893 is responsible. This problem has been solved in Oracle 9.2.0.7. For more information, see Note 867681.

Longer waits for the TT enqueue are generally caused by Oracle bugs. If you experience problems with this enqueue type, you should therefore first import the latest Oracle patchset.

	

	
	enq: HW – contention
	
	· A HW enqueue occurs if several processes are simultaneously trying to move the high water mark of a table.
	In particular, this situation can occur when there are parallel INSERT operations. In such a case, the high water mark is moved by five blocks (in the case of several FREELISTs: five blocks for each FREELIST) by default. If there is a large number of parallel INSERTs, this may be insufficient. The following optimizations are possible:

Increase the number of FREELIST

Increase the _BUMP_HIGHWATER_MARK_COUNT parameter to a value greater than 5, which increases the high water mark by more than five blocks and means that the HWM does not have to be changed so often

HW enqueues may also occur when you create objects with large initial values, since in this case, the high water mark has to be increased up to the INITIAL value.
	

	
	enq: TC – contention
	
	· TC enqueue waits may occur in connection with ALTER TABLESPACE BEGIN BACKUP and when other tablespace commands such as OFFLINE or READ ONLY are used. A checkpoint is executed for these operations. While the DBWR writes the dirty blocks from the buffer pool to the hard disk, the system waits for a TC enqueue. Long runtimes may be caused by a large buffer pool or poor DBWR performance.

·
	If massive TC enqueue waits occur, the runtime of the backup may increase significantly as a result. However, there are no side effects on the system that is running in parallel.

If the backup takes too long because of TC enqueues

A TC enqueue is also requested if, in the context of parallel query accesses, the data on the disk is accessed directly without using the buffer pool. To ensure data consistency, you must ensure that all changes to the affected segment are written from the buffer pool to the disk. This occurs in the context of a segment checkpoint, where the TC enqueue is held.

	

	
	enq: CF – contention
	
	· CF enqueues are control file enqueues, which occur during parallel access to the control file
	Actions that make it necessary to access the control file can be for example, BEGIN BACKUP, redolog archiving by an ARCH process, or a logfile switch by the LGWR process. If a CF enqueue is requested within a period of 15 minutes without success, ORA-00600 [2103] occurs, and the Oracle instance may terminate (see Note 658744)..

In "checkpoint not complete" situations (Note 79341), the LGWR process may wait for a long time for the CF enqueue. This is a follow-on problem. The "checkpoint not complete" situations that cause this problem must be corrected (Note 793113).

See Note 658744, which contains possible causes and solutions for CF enqueues and the ORA-00600 [2103] that are triggered by it.

CF enqueue waits may also occur during an Archiver stuck (Note 391) since in such cases the ARCH process may hold the CF enqueue for a long time. In this case, CF enqueue are only a follow-on problem; after you solve the Archiver stuck situation, the enqueue waits will also disappear.

Can also be caused due to slow network systems
	

	
	enq: SS – contention
	
	· SS enqueues are sort segment enqueues
	A session that must carry out a sorting process on the disk must first request a corresponding Sort Segment. Until this request is met, the session waits on the Wait Event "sort segment request". If several sessions request a sort segment during this time, these sessions wait on an SS enqueue.

The SS enqueue occurs in particular if the SMON process is very busy and cannot respond to the incoming requests promptly. This may happen, for example, when it carries out large rollback activities.

If you encounter performance problems due to SS enqueues, you first have to import the most recent Oracle Patchset, since older patchsets may be partially responsible for problems with SS enqueues
	

	
	enq: FB – contention
	
	· The FB enqueue (format block enqueue) is retained if blocks are formatted in ASSM tablespaces (for example, in the context of INSERT operations).
	Significant waiting times for this enqueue type are generally a result of other problems, such as"log buffer space" waits. Therefore, check whether there are also noticeable Wait Events during times of increased FB Enqueue Waits.

	

	
	enq: PE – contention
	
	· The PE enqueue (parameter enqueue) occurs if a parameter change using "ALTER SYSTEM SET ..." or "ALTER SESSION SET ..." is active and other sessions are waiting for the completion of this change
	Significant waiting times on this enqueue are generally connected to runtime problems during the parameter change. You must primarily check whether there are "ALTER ... SET" commands with longer runtime and what is triggering this increased runtime.

	

	
	enq: TQ - DDL contention
	
	· The TQ enqueue (queue table access enqueue) may occur in connection with Data Pump activities.

·
	For more information, see Note 1013049.
	

	
	enq: PS – contention
	
	· The PS enqueue (Parallel Slave Synchronization Enqueue) occurs for parallel query coordinators if problems occur when setting up slaves or parsing the statement to be executed.
	Therefore, the PS enqueue is usually a follow-up problem and you must investigate why the start of the slave has been delayed (for example, by analyzing a wait event).

For more information about the parallel query, see Note 651060.
On Oracle 10g (10.2.0.3 or lower), bug 5908030 for statements such as INSERT ... SELECT or MERGE and the use of parallel execution may cause a "cursor: pin X" and "enq: PS - contention" deadlock. As a workaround, you can use _KKS_USE_MUTEX_PIN = FALSE to deactivate the use of mutexes (see Note 964344).
	

	
	enq: UL – contention
	
	· The UL enqueue is set by executing DBMS_LOCK.REQUEST.
	Check the application design if it is causing performance issues, likely the somewhere in application code this package is in use
	

	
	enq: SQ - contention
	
	· The sequence cache enqueue is used to synchronize access to Oracle sequences.
	Values may be increased in connection with parallelized online reorganizations, which does not usually require any major changes. If there is an RAC environment problem with enqueues, check if the problem is solved by importing the current patch set. If not, open an SAP customer message for a more thorough analysis.
	

	
	enq: KO - fast object checkpoint
	
	· KO enqueues coordinate the checkpoints of several segments, for example when you create temporary Oracle tables in STAR transformations.
	Increased wait times are usually a result of poor DBWR performance. Therefore, check the Oracle I/O behavior according to Note 793113.

	

	
	enq:SS - contention" and "enq: TS - contention
	
	· If segments are allocated in the temporary tablespace, the sort segment enqueue and the temporary segment enqueue are required.
	There should be no significant wait times for these enqueues. Due to Oracle bug 6083815, the SMON process may allocate the TS enqueue at level 3 although the M001 process requires this enqueue at level 6, but must wait for SMON. At the same time, M001 has already exclusively allocated the SS enqueue,
	

http://sureshgandhi.wordpress.com

