Resolving common Oracle Wait Events using the Wait Interface

	Wait Event
	Possible Causes
	Actions
	Remarks

	db file sequential reads
	Use of an unselective index

Fragmented Indexes

High I/O on a particular disk or mount point

Bad application design

Index reads performance can be affected by
 slow I/O subsystem and/or poor database
files layout, which result in a higher average
 wait time

	Check indexes on the table to ensure
that the right index is being used

Check the column order of the index
with the WHERE clause of the Top
SQL statements

Rebuild indexes with a high clustering
factor

Use partitioning to reduce the amount
of blocks being visited

Make sure optimizer statistics are up
to date

Relocate ‘hot’ datafiles

Consider the usage of multiple buffer
pools and cache frequently used
indexes/tables in the KEEP pool

Inspect the execution plans of the
SQL statements that access data
through indexes

Is it appropriate for the SQL
statements to access data through
index lookups?

Is the application an online transaction
 processing (OLTP) or decision
support system (DSS)?

Would full table scans be more
efficient?

Do the statements use the right driving
 table?

The optimization goal is to minimize
 both the number of logical and
physical I/Os.

	The Oracle process wants a block that is currently not in the SGA, and it is waiting for the database block to be read into the SGA from disk.

Significant db file sequential read wait time is most likely an application issue.

If the

DBA_INDEXES.CLUSTERING_FACTOR of the index approaches the number of blocks in the table, then most of the rows in the table are ordered. This is desirable.

 However, if the clustering factor approaches the number of rows in the table, it means the rows in the table are randomly ordered and thus it requires more I/Os to complete the operation. You can improve the index’s clustering factor by rebuilding the table so that rows are ordered according to the index key and rebuilding the index thereafter.

The OPTIMIZER_INDEX_COST_ADJ and OPTIMIZER_INDEX_CACHING initialization parameters can influence the optimizer to favour the nested loops operation and choose an index access path over a full table scan.

Tuning I/O related waits Note# 223117.1
db file sequential read Reference Note# 34559.1

	db file scattered reads
	The Oracle session has requested and is
waiting for multiple contiguous database
blocks (up to DB_FILE_MULTIBLOCK_READ_COUNT) to be
 read into the SGA from disk.

Full Table scans

Fast Full Index Scans
	Optimize multi-block I/O by setting the
parameter DB_FILE_MULTIBLOCK_READ_COUNT

Partition pruning to reduce number of
blocks visited

Consider the usage of multiple buffer
pools and cache frequently used
indexes/tables in the KEEP pool

Optimize the SQL statement that
initiated most of the waits. The goal is
to minimize the number of physical
and logical reads.

Should the statement access the data
by a full table scan or index FFS?
Would an index range or unique scan
 be more efficient?

Does the query use the right driving
table?

Are the SQL predicates appropriate
for hash or merge join?

 If full scans are appropriate, can
parallel query improve the response
time?

The objective is to reduce the
demands for both the logical and
physical I/Os, and this is best
achieved through SQL and application tuning.

Make sure all statistics are
representative of the actual data.
Check the LAST_ANALYZED date

	If an application that has been running fine for a while suddenly clocks a lot of time on the db file scattered read event and there hasn’t been a code change, you might want to check to see if one or more indexes has been dropped or become unusable.

db file scattered read Reference Note# 34558.1

	log file parallel write
	LGWR waits while writing contents of the
redo log buffer cache to the online log files
on disk

I/O wait on sub system holding the online
 redo log files
	Reduce the amount of redo being
generated

Do not leave tablespaces in hot
backup mode for longer than
necessary

Do not use RAID 5 for redo log files

Use faster disks for redo log files

Ensure that the disks holding the
archived redo log files and the online
redo log files are separate so as to
avoid contention

Consider using NOLOGGING or
UNRECOVERABLE options in SQL
statements

	Reference Note# 34583.1

	log file sync
	Oracle foreground processes are waiting
for a COMMIT or ROLLBACK to complete

	Tune LGWR to get good throughput to
 disk eg: Do not put redo logs on
RAID5

Reduce overall number of commits by
batching transactions so that there
are fewer distinct COMMIT operations
	Reference Note# 34592.1
High Waits on log file sync Note# 125269.1
Tuning the Redolog Buffer Cache and Resolving Redo Latch Contention

Note# 147471.1

	buffer busy waits
	Buffer busy waits are common in an I/O-
bound Oracle system.

The two main cases where this can occur
are:

Another session is reading the block into the
buffer

Another session holds the buffer in an
incompatible mode to our request

These waits indicate read/read, read/write,
 or write/write contention.

The Oracle session is waiting to pin a buffer.
A buffer must be pinned before it can be
read or modified. Only one process can pin a
buffer at any one time.

This wait can be intensified by a large block
 size as more rows can be contained within
the block

This wait happens when a session wants to
access a database block in the buffer cache
but it cannot as the buffer is "busy

It is also often due to several processes
repeatedly reading the same blocks (eg: if
lots of people scan the same index or data
 block)
	The main way to reduce buffer busy
waits is to reduce the total I/O on the
system

Depending on the block type, the
actions will differ

Data Blocks

Eliminate HOT blocks from the
application.

Check for repeatedly scanned /
unselective indexes.

Try rebuilding the object with a higher
PCTFREE so that you reduce the
number of rows per block.

 Check for 'right- hand-indexes'
(indexes that get inserted into at the
same point by many processes).

 Increase INITRANS and MAXTRANS
and reduce PCTUSED This will make
the table less dense .

Reduce the number of rows per block

Segment Header

Increase of number of FREELISTs
 and FREELIST GROUPs

Undo Header

Increase the number of Rollback
Segments

	A process that waits on the buffer busy waits event publishes the reason code in the P3 parameter of the wait event.

The Oracle Metalink note # 34405.1 provides a table of reference - codes 130 and 220 are the most common.

Resolving intense and random buffer busy wait performance problems. Note# 155971.1

	free buffer waits
	This means we are waiting for a free buffer
but there are none available in the cache
because there are too many dirty buffers in
 the cache

Either the buffer cache is too small or the
DBWR is slow in writing modified buffers to
disk

DBWR is unable to keep up to the write
requests

Checkpoints happening too fast – maybe due
 to high database activity and under-sized
 online redo log files

Large sorts and full table scans are filling the
 cache with modified blocks faster than the
 DBWR is able to write to disk

If the number of dirty buffers that need to be
 written to disk is larger than the number that
DBWR can write per batch, then these waits
 can be observed

	Reduce checkpoint frequency -
increase the size of the online redo
log files

Examine the size of the buffer cache
– consider increasing the size of the
buffer cache in the SGA

Set disk_asynch_io = true set

If not using asynchronous I/O

increase the number of db writer

processes or dbwr slaves

Ensure hot spots do not exist by
spreading datafiles over disks and
disk controllers

Pre-sorting or reorganizing data can
help
	Understanding and Tuning Buffer Cache and DBWR Note# 62172.1
How to Identify a Hot Block within the database Buffer Cache.

Note# 163424.1

	enqueue waits
	This wait event indicates a wait for a lock
that is held by another session (or sessions)
in an incompatible mode to the requested
mode.

TX Transaction Lock

Generally due to table or application set up
issues

This indicates contention for row-level lock.
 This wait occurs when a transaction tries to
update or delete rows that are currently
 locked by another transaction.

This usually is an application issue.

TM DML enqueue lock

Generally due to application issues,

particularly if foreign key constraints have

not been indexed.

ST lock

Database actions that modify the UET$ (used

extent) and FET$ (free extent) tables require

the ST lock, which includes actions such as

drop, truncate, and coalesce.

Contention for the ST lock indicates there are

multiple sessions actively performing

dynamic disk space allocation or deallocation

in dictionary managed tablespaces

	Reduce waits and wait times

The action to take depends on the lock
 type which is causing the most problems

Whenever you see an enqueue wait
event for the TX enqueue, the first
step is to find out who the blocker is
and if there are multiple waiters for
the same resource

Waits for TM enqueue in Mode 3 are primarily due to unindexed foreign key columns.

Create indexes on foreign keys < 10g

Following are some of the things you
can do to minimize ST lock contention
in your database:

Use locally managed tablespaces

Recreate all temporary tablespaces
using the CREATE TEMPORARY
TABLESPACE TEMPFILE… command.

	Maximum number of enqueue resources that can be concurrently locked is controlled by the ENQUEUE_RESOURCES parameter.

Reference Note# 34566.1
Tracing sessions waiting on an enqueue Note# 102925.1
Details of V$LOCK view and lock modes Note:29787.1

	Cache buffer chain latch
	This latch is acquired when searching

for data blocks
Buffer cache is a chain of blocks and
each chain is protected by a child
latch when it needs to be scanned

Hot blocks are another common
cause of cache buffers chains latch
contention. This happens when
multiple sessions repeatedly access
 one or more blocks that are
protected by the same child cache
buffers chains latch.

 SQL statements with high
BUFFER_GETS (logical reads) per
EXECUTIONS are the main culprits

Multiple concurrent sessions are
executing the same inefficient SQL
that is going after the same data set
	Reducing contention for the cache
buffer chains latch will usually require
reducing logical I/O rates by tuning
and minimizing the I/O requirements of
 the SQL involved. High I/O rates could
be a sign of a hot block (meaning a
block highly accessed).

Exporting the table, increasing the
PCTFREE significantly, and importing
the data. This minimizes the number of
 rows per block, spreading them over
many blocks. Of course, this is at the
expense of storage and full table
scans operations will be slower

Minimizing the number of records per
block in the table

For indexes, you can rebuild them
with higher PCTFREE values, bearing
in mind that this may increase the
height of the index.

Consider reducing the block size

 Starting in Oracle9i Database, Oracle
supports multiple block sizes. If the
current block size is 16K, you may
move the table or recreate the index in
a tablespace with an 8K block size.
This too will negatively impact full
table scans operations. Also, various
 block sizes increase management
complexity.

	The default number of hash latches is usually 1024

The number of hash latches can be adjusted by the parameter _DB_BLOCKS_HASH_LATCHES

What are latches and what causes
latch contention

	Cache buffer LRU chain latch
	Processes need to get this latch when they
need to move buffers based on the LRU
block replacement policy in the buffer cache

The cache buffer lru chain latch is acquired
in order to introduce a new block into the
buffer cache and when writing a buffer
back to disk, specifically when trying to
scan the LRU (least recently used) chain
containing all the dirty blocks in the buffer
cache.

Competition for the cache buffers lru chain

latch is symptomatic of intense buffer cache

 activity caused by inefficient SQL

statements. Statements that repeatedly scan

 large unselective indexes or perform full

table scans are the prime culprits.

Heavy contention for this latch is generally

due to heavy buffer cache activity which

can be caused, for example, by:

 Repeatedly scanning large unselective

indexes

	Contention in this latch can be
avoided implementing multiple
buffer pools or increasing the
number of LRU latches with the
 parameter DB_BLOCK_LRU_LATCHES
(The default value is generally
 sufficient for most systems).

Its possible to reduce
contention for the cache buffer
lru chain latch by increasing the
size of the buffer cache and
thereby reducing the rate at
which new blocks are
introduced into the buffer cache

	

	Direct Path Reads
	These waits are associated with direct read operations which read data directly into the sessions PGA bypassing the SGA

The "direct path read" and "direct path write" wait events are related to operations that are performed in PGA like sorting, group by operation, hash join

In DSS type systems, or during heavy batch periods, waits on "direct path read" are quite normal

However, for an OLTP system these waits are significant

These wait events can occur during sorting operations which is not surprising as direct path reads and writes usually occur in connection with temporary tsegments

SQL statements with functions that require sorts, such as ORDER BY, GROUP BY, UNION, DISTINCT, and ROLLUP, write sort runs to the temporary tablespace when the input size is larger than the work area in the PGA

	Ensure the OS asynchronous IO is configured correctly.

Check for IO heavy sessions / SQL and see if the amount of IO can be reduced.

Ensure no disks are IO bound.

Set your PGA_AGGREGATE_TARGET to appropriate value (if the parameter WORKAREA_SIZE_POLICY = AUTO)

Or set *_area_size manually (like sort_area_size and then you have to set WORKAREA_SIZE_POLICY = MANUAL

Whenever possible use UNION ALL instead of UNION, and where applicable use HASH JOIN instead of SORT MERGE and NESTED LOOPS instead of HASH JOIN.

 Make sure the optimizer selects the right driving table. Check to see if the composite index’s columns can be rearranged to match the ORDER BY clause to avoid sort entirely.

Also, consider automating the SQL work areas using PGA_AGGREGATE_TARGET in Oracle9i Database.

Query V$SESSTAT> to identify sessions with high "physical reads direct"

	Default size of HASH_AREA_SIZE is twice that of SORT_AREA_SIZE

Larger HASH_AREA_SIZE will influence optimizer to go for hash joins instead of nested loops

Hidden parameter DB_FILE_DIRECT_IO_COUNT can impact the direct path read performance.It sets the maximum I/O buffer size of direct read and write operations. Default is 1M in 9i

How to identify resource intensive SQL statements?

	Direct Path Writes
	These are waits that are associated with
direct write operations that write data from
users’ PGAs to data files or temporary
tablespaces

Direct load operations (eg: Create Table as
 Select (CTAS) may use this)

Parallel DML operations

Sort IO (when a sort does not fit in memory
	If the file indicates a temporary
tablespace check for unexpected disk
sort operations.

Ensure
<Parameter:DISK_ASYNCH_IO> is
TRUE . This is unlikely to reduce wait
times from the wait event timings but
may reduce sessions elapsed times
(as synchronous direct IO is not
accounted for in wait event timings).

Ensure the OS asynchronous IO is
configured correctly.

Ensure no disks are IO bound

	

	Latch Free Waits

	This wait indicates that the process is
waiting for a latch that is currently busy
(held by another process).

When you see a latch free wait event in the
V$SESSION_WAIT view, it means the
process failed to obtain the latch in the
willing-to-wait mode after spinning
_SPIN_COUNT times and went to sleep.
When processes compete heavily for
latches, they will also consume more CPU
resources because of spinning. The result is
a higher response time

	If the TIME spent waiting for latches is
significant then it is best to determine
which latches are suffering from
contention.

	A latch is a kind of low level lock.

Latches apply only to memory
structures in the SGA. They do not
apply to database objects. An Oracle
SGA has many latches, and they
exist to protect various memory
structures from potential corruption
 by concurrent access.

The time spent on latch waits is an
effect, not a cause; the cause is that
you are doing too many block gets,
and block gets require
cache buffer chain latching

What are Latches and what causes
Latch contention
Database Lock and Latch Information
Knowledge Browser Product Page

	Library cache latch
	The library cache latches protect the
cached SQL statements and objects
definitions held in the library cache within the
shared pool. The library cache latch must be
acquired in order to add a new statement to
the library cache

Application is making heavy use of literal
SQL- use of bind variables will reduce this
latch considerably

	Latch is to ensure that the application
is reusing as much as possible SQL
statement representation. Use bind
variables whenever possible in the
application

You can reduce the library cache
latch hold time by properly setting the
SESSION_CACHED_CURSORS parameter

Consider increasing shared pool
	Larger shared pools tend to have
long free lists and processes that
need to allocate space in them must
 spend extra time scanning the long
free lists while holding the shared
pool latch

if your database is not yet on
Oracle9i Database, an oversized
shared pool can increase the
contention for the shared pool latch.

	Shared pool latch
	The shared pool latch is used to protect
critical operations when allocating and
freeing memory in the shared pool

Contentions for the shared pool and library
cache latches are mainly due to intense hard
 parsing. A hard parse applies to new
cursors and cursors that are aged out and
must be re-executed

The cost of parsing a new SQL statement is
expensive both in terms of
CPU requirements and the number of times
the library cache and shared pool latches
may need to be acquired and released.
	Ways to reduce the shared pool latch
are, avoid hard parses when
possible, parse once, execute many.

Eliminating literal SQL is also useful to
avoid the shared pool latch. The size
 of the shared_pool and use of MTS
(shared server option) also greatly
influences the shared pool latch.

The workaround is to set the
initialization parameter
CURSOR_SHARING to FORCE. This
allows statements that differ in literal
 values but are otherwise identical to
share a cursor and therefore reduce
latch contention, memory usage, and
 hard parse.

	<Note 62143.1> explains how to
identify and correct problems with the
shared pool, and shared pool latch.

	Row cache objects latch

	This latch comes into play when user
processes are attempting to access the
cached data dictionary values.

	It is not common to have contention in
this latch and the only way to reduce
contention for this latch is by
increasing the size of the shared pool
(SHARED_POOL_SIZE).

Use Locally Managed tablespaces for
your application objects especially
indexes
Review and amend your database
logical design , a good example is to
merge or decrease the number of
indexes on tables with heavy inserts
	Configuring the library cache to an
acceptable size usually ensures that
the data dictionary cache is also
properly sized. So tuning Library
Cache will tune Row Cache indirectly

